

Assessing the potential of crowdsourcing package delivery using mobility data

Ayelet Arditi Eran Toch

http://toch.tau.ac.il/

Department of Industrial Engineering

Tel Aviv University, Israel

ayelet.ard@gmail.com

Part of the **Crowdsourcing Package Delivery Project**, with Michal Tzur and Tal Raviv, funded by the Ministry of Science, Technology, and Space

Crowdsourcing in the city

- We are interested in evaluating the potential of "physical crowdsourcing" in cities
- Especially when **time and space synchronization** is required

Package Deliveries

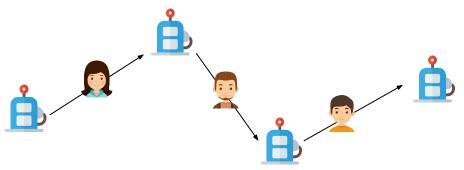
the final leg of the complete journey of the good before it reaches the customer

Challenges

- Rising expectations for shorter delivery times and lower prices
- Sometimes poor urban infrastructure/ traffic
- Unpredictability in transit and customer availability
- Air pollution

Crowdsourcing Package Deliveries

Utilizing the community movements for package deliveries

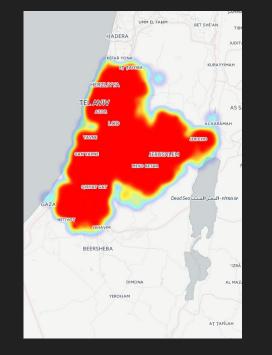

9

Different Settings

Direct (1) vs. multi-lag transfer (2)

Hand shaking (3) vs. stop points (4)

Intra-urban (5) vs. Inter-urban (6)


Sadilek, Krumm, and Horvitz (2013) - (2), (3), (6)* Chen et al. (2017) - (2), (4), (5) McInerney et al. (2013) - (2), (4), (6) Arslan et al. (2016) - (1), (3), (5)

What are we interested in?

- How can different system designs affect its capacity?
- What is the potential of such a system in terms of:
 - Coverage
 - Delivery durations
 - Number of hops
 - Storage times
 - Geographical differences

Data Analysis

Mobile Phone Data as a Proxy

 one-month data extracted of anonymized waypoints of Israeli mobile phone users from 2013

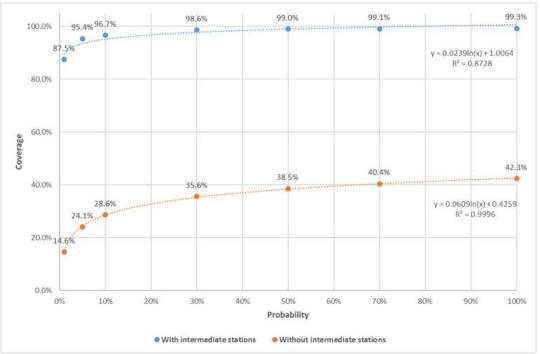
We started with:

- ~800 GB of data
- 1.8M distinct users

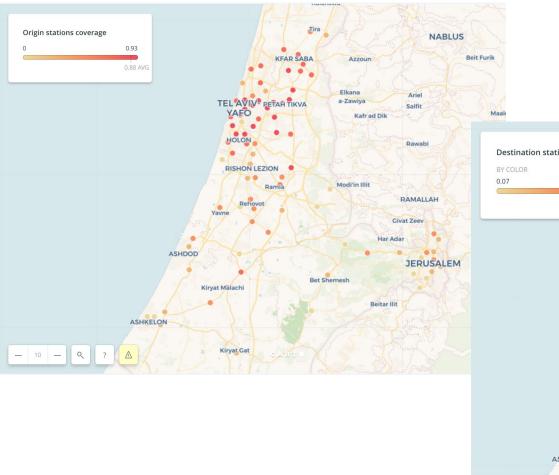
Trajectory Mining

• Trajectory extraction

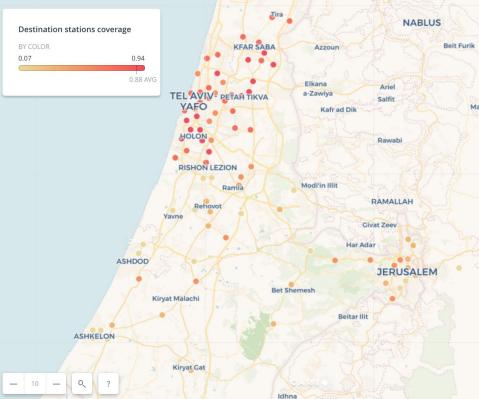
Trajectory *Tr* **is a sequence of points** pertaining to one trip consisting of longitude, latitude and a timestamp


- Stay point detection
- 91 gas stations as our stop points
- Finding gas stations along the trajectories' paths
- Graph modeling for packages' potential transitions

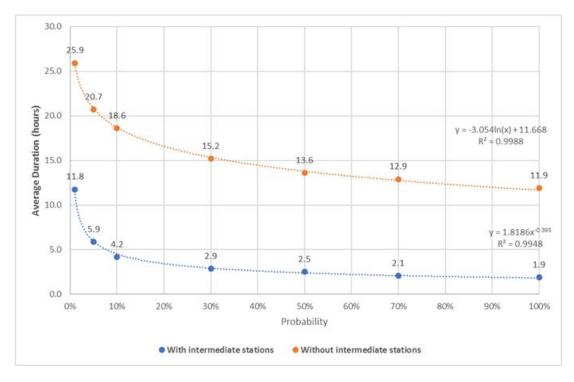
Results


Probability	Mean number of potential transfers	Mean number of unique users
100%	1.9M	465K
70%	1.3M	410K
50%	954K	358K
30%	573K	280K
10%	190K	139K
5%	95K	80K
1%	19K	18k

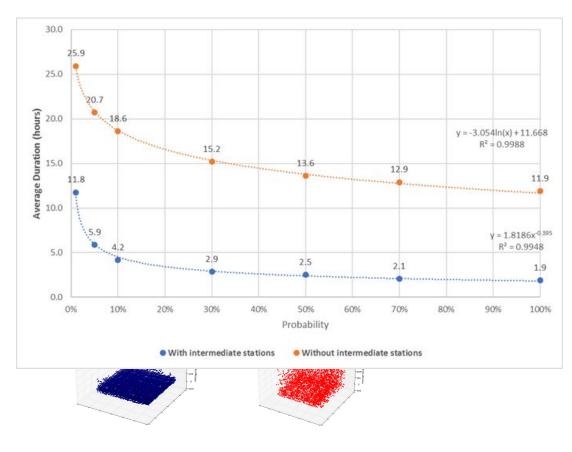
Coverage


Percentage of simulated origin-destination requests with a path

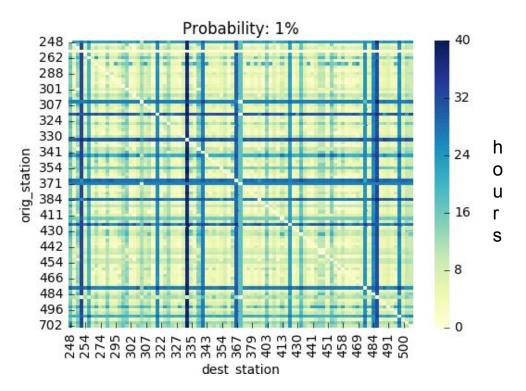
Probability - the probability a user will want to transfer a package (uniform distribution)



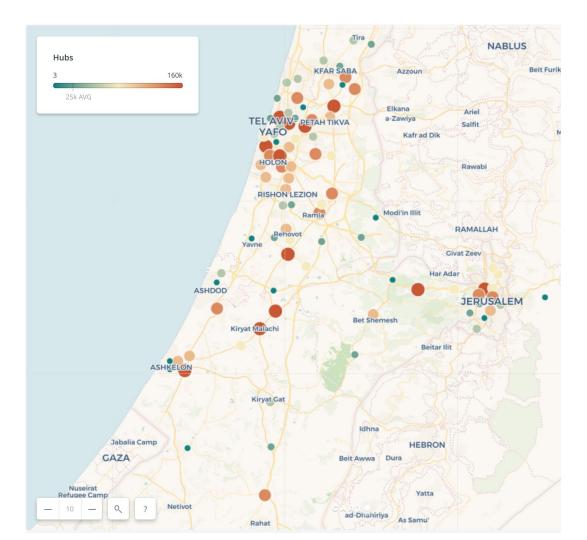
Coverage Probability = 1%

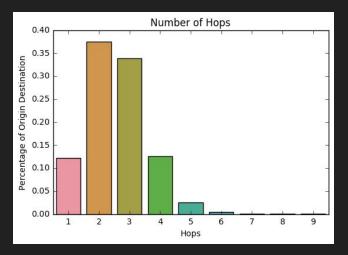

Average	Durations	(shortest	paths)
---------	-----------	-----------	--------

Probability	Mean number of potential transfers	Mean number of unique users
100%	1.9M	465K
70%	1.3M	410K
50%	954K	358K
30%	573K	280K
10%	190K	139K
5%	95K	80K
1%	19K	18k

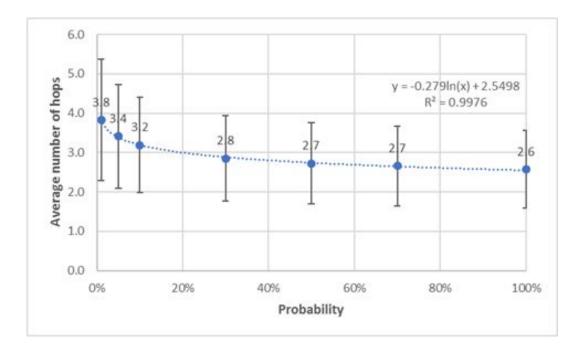

Average D	Durations	(shortest	paths)
-----------	-----------	-----------	--------

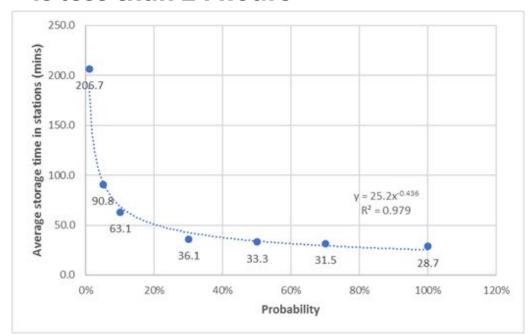
Probability	Mean number of potential transfers	Mean number of unique users
100%	1.9M	465K
70%	1.3M	410K
50%	954K	358K
30%	573K	280K
10%	190K	139K
5%	95K	80K
1%	19K	18k




Probability	Mean number of potential transfers	Mean number of unique users
100%	1.9M	465K
70%	1.3M	410K
50%	954K	358K
30%	573K	280K
10%	190K	139K
5%	95K	80K
1%	19K	18k

Mean Durations - standard deviations


Hubs



Number of Hops

How many users are taking part in the delivery?

Storage Durations For all probabilities, in more than 97% of time, the storage duration in a station is less than 24 hours

Summary

- Much better performance in terms of coverage and delivery durations when enabling the setting of intermediate stations
- Both the coverage and the delivery durations are not highly sensitive to different network sizes (probabilities)
- A framework for real data simulation of crowdsourcing applications

http://toch.tau.ac.il ayelet.ard@gmail.com

